《临床心血管病杂志》
大数据是现代医学模式的重要特征。在这种医疗模式下,要求医疗人员在确保患者安全和健康的同时追求效率的最大化[1]。对于高分辨率的医学影像成像,集中体现在医务人员快速、准确、有效地解释影像数据(包括肉眼可见和不可见),挖掘利于诊断和治疗的有用信息。在此背景下,人工智能(artificial intelligence,AI)应运而生,它为促进图像采集、测量、报告和随后的临床路径以及影像和临床数据的整合提供了有效手段[2]。心血管影像的精确性成为AI临床应用中的主要领域之一,本文对此作一综述。
1 人工智能及其在医学上的应用
AI是一个广义的术语,指的是机器或计算程序执行具有人类智能特征的任务的能力,如模式识别和解决问题的能力等。AI可以通过弥补人类智能,使现有医疗诊断和预后价值最大化,同时使医师负担最小化,从而显著改善健康诊疗过程和结果。AI在临床实践中的应用预示着医学领域一个更为剧烈变化时代的到来,在影像学方面尤其如此。一项通过分析科学网数据库的研究[3]发现,目前AI在医学的研究领域主要集中在大数据分析、脑卒中康复、心脏手术和医疗诊断和预后预测等方面。其中,用于医学诊断、预后预测和分类的神经网络和支持向量机是主要热点,占所有文献的26%;而未来最引人关注的研究主题是基于AI的微创手术。然而,关于AI数据管理、模型可靠性、模型临床效用验证等问题尚未进行广泛研究。
2 人工智能的机器学习法
大数据是一个经常用来描述大量收集数据的术语,如来自大型生物信息库的基因组数据、电子健康记录档案和大型研究队列数据以及影像学扫描数据等。AI系统通过识别和提取一组观测数据(数据集)的模式来自主获取知识的过程称为机器学习(machine learning,ML)。ML是人工智能的一个组成部分,描述为计算机从经验中学习的过程,并在没有事先知识的情况下执行预定的任务[4]。机器学习可以进一步分为监督学习、半监督学习和无监督学习,这取决于用于学习的样本是否完全标记、部分标记或未标记。ML的典型例子是人工神经网络,后者基于人类大脑的神经元及其连接,神经元之间的相互依赖关系反映出不同的权重,每个神经元接受多个输入,所有的输入一起决定了神经元的激活。通过样本训练找到这些合适权重的过程就是学习。学习过程的复杂性和所需的样本量随着神经元数量的增加而增加。由于计算能力和样本大小的限制,机器学习应用程序的成功依赖于从原始样本中手工提取特征来减少神经元的数量。为了解决这一问题,人们提出了深度学习的方法,即自动学习代表性的样本。深度学习是指一种特别强大的ML方法,它利用卷积神经网络模拟人类的认知,常用于影像模式识别和分类。
模型训练是所有ML类型的共同过程,它是利用模型分析所提供的数据中的各种特性来学习如何生成输出标签的过程[5]。如在超声心动图中,一个模型可以分析各种特征,如左心室壁厚度和左心室射血分数,以确定患者是否具有特定的条件。然而,在分析中包含不相关的特征可能会导致模型过度拟合,从而在呈现新数据集时降低其准确性。这强调了拥有一个能够代表总体的训练数据集的重要性。数据集的质量对于最终ML模型的质量至关重要。尽管ML算法可以使用小数据集或大数据集进行训练,但大数据集可以最大限度地提高训练算法的内部和外部有效性,降低过度拟合的风险。正确模型的选择通常取决于操作员的专业知识、数据集的性质和最终人工智能系统的目的。
3 人工智能在心血管超声的应用
心血管成像领域,包括超声心动图、心脏计算机断层扫描、心脏磁共振成像和核成像,具有复杂的成像技术和高容量的成像数据,处于精准心脏病学革命的前沿。然而,在基于AI的临床转化方法中,心血管成像一直落后于肿瘤学等其他领域。人工智能在超声心动图中的应用包括自动心室定量和射血分数计算、应变测量和瓣膜形态及功能评估以及ML在心脏疾病自动诊断中的应用。
3.1 心室定量和EF自动化。自动心室量化和EF计算的算法旨在提供准确、快速和可重复的心尖视图分类、解剖标志检测、心室壁分割和心内膜跟踪。有研究[6]比较了AI软件自动测量(AutoEF)和手工追踪双平面Simpson法测量左室EF的准确性,并与心脏MRI进行了比较。结果表明AutoEF与手动双平面Simpson法测得的EF相关性较好,且与MRI相关性良好,但AutoEF低估了左室舒张末期容积(EDV)和收缩期末期容积(ESV)。此外,在不同切面,测量的准确性存在差异,以胸骨旁长轴切面的准确性最高,达96%,而在心尖切面时整体精度降低(84%)。腔室定量和左室EF测量的中位数绝对偏差在15%~17%,其中ESV的绝对偏差最小;左房容积和左室EDV被高估。